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Handling 100 Gb/s RDMA, 
and NVMe in Apache Crail 
and Pocket



Hardware Changes since 2010

2010 2015 2020

Storage 50 MB/s
(HDD)

500 MB/s
(SSD)

16 GB/s
(NVMe)

10x

Network 1 Gb/s 10 Gb/s 100 Gb/s 10x

CPU ~3 GHz ~3 GHz ~GHz 😒

~ 2014: starting 
Crail project

Reynold keynote, https://databricks.com/session_na20/wednesday-morning-keynotes



Challenges
put your #assignedhashtag here by setting the footer in view-header/footer● Difficult to leverage modern networking and storage hardware 

● Example (2016): sorting 12 TB on a 128 node cluster, all data 
in DRAM, 100 Gb/s full bisection network

Inflexible: 
emporary data management hard-wired with data processing 
framework

Difficult to change deployment (e.g., disaggregation, tiered 
storage, etc.)



Software Overheads

Sorting Application

JVM

Netty

Serializer
sockets

Data Processing Framework

TCP/IP

Ethernet

NIC

filesystem

block layer

iSCSI

SSD

HotNets’16

software overhead
are spread
over the entire
stack

Sorter



How do Supercomputers solve this?

IBM 
BlueGene 

Active Store 
Project
(2012)



RDMA on Azure



RDMA Networking

● User-level network architecture

● Kernel bypass
– NIC queues accessible from user-space

● Transport stack offloading
– Infiniband, RoCE, iWARP



RDMA Networking: Benefits

● User-level network architecture

● Kernel bypass
– NIC queues accessible from user-space

● Transport stack offloading
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Low latency 
no sycalls

Zero-copy 
directly DMA from/to 
userspace buffers

Low CPU usage
transport offloading

High bandwidth
Good bandwith/core
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RDMA Two-Sided Operations

Linux

Send queue
(mapped)

      Application

Send buffer

Linux

Recv queue
(mapped)

      Application

Recv buffer

DMA

DMA

1. post descriptor 
    to recv queue
2. wait for completion
    descriptor to be 
    enqueued in 
    completion queue
    (not shown)

1. post descriptor 
    to send queue
2. wait for completion
    descriptor to be 
    enqueued in 
    completion queue
    (not shown)

polling/
interrupts

Source does not need to know buffer address at target. Receiver is notified. 

SourceTarget



Linux

Src Buffer

DMA

    Application

Linux

Target Buffer

DMA

    Application

RDMA 
read

RDMA One-Sided Operations

DMA

send
queue

1. register buffer 
    with NIC
    (causes memory
     pinning)

1. post read operation
    descriptor 
    to send queue
2. wait for completion
    descriptor to be 
    enqueued in 
    completion queue
    (not shown)

Source needs to know target address. Target is not notified. 

Target Source



NVM Express (NVMe)

● Host-controller interface for PCI 
attached SSDs

● Enables user-level access for storage
– Map device queues into user-space

– SPDK, NVMe-over-Fabrics
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Can’t implement
every operation
for all the different
hardware, 
framework and 
deployment 
options 

Integrating User-level I/O with Data 
Processing Systems
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Implement hardware
support once and 
support different 
operations and 
frameworks

Integrating User-level I/O with Data 
Processing Systems (2)

Crail:
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Crail Architecture 

Datacenter
Network

Metadata
Server

(2) Data
Read/Write

(1) Metadata Lookup

Storage
class (e.g., DRAM, NVMe, HDD)

Storage
Server

Data Processing Framework

File read/write 
KV put/get

File, KV pair

Data 
striped
across 
servers 
and 
possibly
storage
classes

Crail



Performance Challenges 

1.Must handle millions of storage operations per second on a large 
number files with a wide range of data sizes
➢ Example: the Spark shuffle engine built on top of Crail creates #partition files per core in the 

cluster. With 128 machines each running 3 executors with 5 cores each that is 11M files (!)

➢ Files have a wide range of data sizes

2.Tasks running on a single core should be able to read/write at line speed 
(e.g., 100 Gb/s)

3.Must support reading/writing of tiny files in a microseconds

4.Overall CPU consumption of the storage system should be kept low

5.Must be able to store data volumes > cluster DRAM0
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Performance Challenges 

1.Must handle millions of storage operations per second on a large number 
files with a wide range of data sizes
➢ Example: the Spark shuffle engine built on top of Crail creates #partition files per core in the cluster. 

With 128 machines each running 3 executors with 5 cores each that is 11M files (!)

➢ Files have a wide range of data sizes

2.Should be able to read/write at line speed (e.g., 100 Gb/s) using a single 
core (for a reasonable I/O size)

3.Must support reading/writing of tiny files in a few microseconds

4.Overall CPU consumption of the storage system should be kept low

5.Must be able to store data volumes > cluster DRAM



Performance/Design Decisions
1.Fast data path using one-sided RDMA

– Metadata needs to include target address to read/write

– Have the NIC DMA to/from actual application buffers

2.Scale metadata RPC using two-sided RDMA
– Keep RPC request/response messages small (< 128 bytes)

– Process RPC in-place on receiving core

– Avoid NUMA remote memory access

3.No threads, execute all I/O in the process context of the app

4.Avoid interrupts for small data transfers and RPCs

5.Keep per NUMA pre-pinned buffer pool for application memory

1 22

1
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1

very close to 
HW limits



Performance/Design Decisions
1.Fast data path using one-sided RDMA

– Metadata needs to include target address for read/write

– Have the NIC DMA to/from actual application buffers

2.Scale metadata RPC using two-sided RDMA
– Keep RPC request/response messages small (< 128 bytes)

– Process RPC in-place on receiving core

– Avoid NUMA remote memory access

3.No threads, execute all I/O in the process context of the app

4.Avoid interrupts for small data transfers and RPCs

5.Per NUMA node pre-pinned buffer pool for application memory

CPU 
cores

user-mapped 
queues 

RPC 
processing

Lock-free 
datastructures

 NIC  NIC

 Numa node 1 Numa node 0

Metadata server
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Performance/Design Decisions
1.Make data path fast using one-sided RDMA

– Metadata needs to include target address for read/write

– Have the NIC DMA to/from actual application buffers

2.Scale metadata RPC using two-sided RDMA
– Keep RPC request/response messages small (< 128 bytes)

– Process RPC in-place on receiving core

– Avoid NUMA remote memory access

3.No threads, execute all I/O in the process context of the app

4.Avoid interrupts for small data transfers and RPCs

5.Per NUMA node pre-pinned buffer pool for application memory



Performance/Design Decisions

6.Horizontal tiering
➢ Store data in Flash iff all DRAM in the cluster is exhausted

➢ Remote Flash ≈ Local Flash

  File
  HDD block

  Flash block
  memory block
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Example: Spark Shuffle using Crail

Crail
File Crail

Directory

append 2
sequential 

read

1

reduce 
tasks

map
tasks

compute
cluster

How to avoid 
large numbers
of small files?

1. Don’t: Crail 
performs well 
for small files

2. Re-use per
core files

3. Interleaved
reading



Sorting 12TB on 128 Node Cluster

98.3s

527.6s

hardware 
limit

www.sortingbenchmark.org



Pocket: Ephemeral Storage for 
Serverless Analytics



● Serverless frameworks are increasingly being used for 
interactive analytics

Exploit massive parallelism with large number of serverless 
tasks

Serverless Analytics



● Serverless frameworks are increasingly being used for 
interactive analytics
– Exploit massive parallelism with large number of serverless 
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Serverless Analytics



● Serverless analytics involve multiple stages of execution
– Serverless tasks need an efficient way to communicate intermediate data between 

different stages 

● Today: such data sharing is implemented using remote storage
– Enables fast and fine-grained scaling

● Problem: existing storage platforms not suitable
– Slow (e.g., S3)

– No dynamic scaling (e.g. Redis)

– Designed for either small or large data sets 

● Can we use Crail? 

Challenge: Data Sharing



Crail Deployment Modes

compute/storage
co-located

storage 
disaggregation

flash storage
disaggregation



Crail Deployment Modes

compute/storage
co-located

storage 
disaggregation

flash storage
disaggregation

Not enough. We also 
need elastic scaling.



Pocket Overview
Brain of the 
system, decides:

1. Type of storage
resources to use
for a job based 
on job properties

2. When to scale
up/down



Pocket: Resource Utilization

Pocket cost-effectively allocates resources based on user/framework hints



Pocket: Autoscaling



put your #assignedhashtag here by setting the footer in view-header/footer● crail.apache.org

● github.com/apache/incubator-crail (Java)

● github.com/patrickstuedi/crailnative (C++)

● Pocket: Elastic ephemeral storage for serverless analytics, 
OSDI’2019

● github.com/stanford-mast/pocket

● Wimpy nodes with 10 GbE: Leveraging One-sided RDMA operations 
to boost Memcached, USENIX ATC’12

References

http://crail.apache.org/
https://github.com/apache/incubator-crail
https://github.com/patrickstuedi/crailnative
https://anakli.inf.ethz.ch/papers/pocket.pdf
https://github.com/stanford-mast/pocket
https://www.usenix.org/system/files/conference/atc12/atc12-final36.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final36.pdf


Contributers

Crail: Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, 
Bernard Metzler, Adrian Schuepbach, Ana Klimovic, Yuval 
Degani

Pocket: Ana Klimovic, Yawen Wang, Patrick Stuedi, 
Animesh Trivedi, Jonas Pfefferle, Christos Kozyrakis
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