Handling 100 Gb/s RDMA,
and NVMe in Apache Crail
and Pocket

Patrick Stuedi



'~ 2014: starting
~ Crail project |

2010 2015 2020

Storage 50 MB/s 500 MB/s 16 GB/s 10x

(HDD) (SSD) (NVMe)
Network 1 Gb/s 10 Gb/s 100 Gb/s 10x
CPU ~3 GHz ~3 GHz ~GHz

Reynold keynote, https://databricks.com/session_na20/wednesday-morning-keynotes




* Difficult to leverage modern networking and storage hardware

* Example (2016): sorting 12 TB on a 128 node cluster, all data
in DRAM, 100 Gb/s full bisection network
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Software Overheads

1 Gbps HDD 100 Gbps | Flash
Bandwidth = 117 MB/s | 140 MB/s | 12.5GB/s | 3.1 GB/s
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How do Supercomputers solve this?
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= Linux OS enabling storage + embedded compute
| + OFED RDMA & TCP/IP over BG/Q Torus — failure resilient
= Standard middleware — GPFS, DB2, MapReduce, Streams
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Active Storage Target Applications
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All-to-all throughput roughly
equivalent to Flash throughput

= Graph, Join, Sort, order-by, group-by, MR, aggregation
= Application specific storage interface




RDMA on Azure
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Compute Memory Storage
Optimized Optimized Optimized

High
Performance
Compute

General Purpose

Av2, B, DCsv2, Dv2, M, Mv2, Dv2, ]
- Dsv2, Dv3, Dsv3, Fsv2 DSv2, Ev3, Esv3, - NC,NCV2,NCV3,ND, oo -- Microsoft
ype Davé, Dasv4, Ddv4, Eavd, Easvd, Evd, NDv2, NV, NVv3, Nvvg 7 over it .. Azure
Ddsv4,Dv4, Dsv4 Esv4, Edv4, Edsv4 .
Linux RDMA
. . . . s R s High memory and
o Balanced CPU and High ratio of Highistioor Highdisk Spec'ahze.d juithisine e compute power —
Description memo compute to memo memory to throughput or multiple NVIDIA fastestand most
n7 P A7 compute and 10 GPUs
. . ' Batch processing,
Testing and Medium traffic web : : ’
Relational . Compute intengve, analytics, molecular
development, small- servers, network . Big Data, . . R
; - database services, graphics-intengive, modeling, fluid
medium databases, appliances, batch ; sSaL, NoSQL T .
low-medium traffic rocessing, a anshviics/larsch databases VR dynanteslon
P €, 3pp caches workloads latency RDMA
web servers servers -
networking




* User-level network architecture

* Kernel bypass

— NIC queues accessible from user-space

* Transport stack offloading
- Infiniband, RoCE, iWARP




* User-level network architecture

Low latency
 Kernel bypaSS no sycalls
Zero-copy
— NIC queues accessible from user-space directly DMA from/to
userspace buffers
* Transport stack offloading Low CPU usage

transport offloading
- Infiniband, RoCE, iWARP High bandwidth




* User-level network architecture

Low latency
 Kernel bypaSS no sycalls
Zero-copy
— NIC queues accessible from user-space directly DMA from/to
userspace buffers
* Transport stack offloading Low CPU usage
transport offlaading
- Infiniband, RoCE, iWARP —Higrbarawiath—

High bandwidth / core




RDMA Two-Sided Operations

Target Source
Application 1. post descriptor Application 1. post descriptor
to recv queue to send queue
2. wait for completion 2. wait for completion
Recv buffer descriptor to be Send buffer descriptor to be
enqueued in enqueued in
b completion queue ’ completion queue
“ (not shown) (not shown)
|
Recv queue . Send queue
(mapped) : . [:;Olllngi DMA (mapped)
Interrupts
——DMA 2 : _
Linux

Source does not need to know buffer address at target. Receiver is notified.




RDMA One-Sided Operations

Target

Application
Target Buffer

Source needs to know target address. 'Target IS not notified.

1. reqister buffer
with NIC
(causes memory

pinning)

RDMA
read

U R R ]

Source

Application
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1. post read operation
descriptor
to send queue

2. wait for completion
descriptor to be
enqueued in
completion queue
(not shown)




* Host-controller interface for PCI
attached SSDs

* Enables user-level access for storage
— Map device queues into user-space
- SPDK, NVMe-over-Fabrics




Integrating User-level I/O with Data
Processing Systems

)
- 2 o 5
+— wn = = o
g-ccs &} = Q 5o 5@
o m n E'“E Oo

l»m»-»%»l

Can’t implement
every operation
for all the different
hardware,
framework and

Ilum_) deployment
EXPRESS options

13
3D XPoint




Integrating User-level I/O with Data
Processing Systems (2)
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[ Crail: (Distributed) Temporary Data Store
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Data Processing Framework
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Performance Challenges




1.Must handle millions of storage operations per second on a large
number files with a wide range of data sizes

» Example: the Spark shuffle engine built on top of Crail creates #partition files per core in the
cluster. With 128 machines each running 3 executors with 5 cores each that is 11M files (!)

> Files have a wide range of data sizes
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1.Must handle millions of storage operations per second on a large number
files with a wide range of data sizes

» Example: the Spark shuffle engine built on top of Crail creates #partition files per core in the cluster.
With 128 machines each running 3 executors with 5 cores each that is 11M files (!)

> Files have a wide range of data sizes

2.Should be able to read/write at line speed (e.g., 100 Gb/s) using a single
core (for a reasonable I/O size)

3.Must support reading/writing of tiny files in a few microseconds
4.Overall CPU consumption of the storage system should be kept low

5.Must be able to store data volumes > cluster DRAM




Performance/Design Decisions




Performance/Design Decisions

1.Fast data path using one-sided RDMA

- Metadata needs to include target address for read/write (not shown)

- Have the NIC DMA to/from actual application buffers
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Performance/Design Decisions

1.Fast data path using one-sided RDMA

- Metadata needs to include target address for read/write (not shown)

- Have the NIC DMA to/from actual application buffers
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Performance/Design Decisions

1.Fast data path using one-sided RDMA

- Metadata needs to include target address for read/write

Lock-free
datastructures #‘ .
RPC
— Have the NIC DMA to/from actual application buffers processing

user-mapped

2.Scale metadata RPC using two-sided RDMA queues
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CPU
- Keep RPC request/response messages small (< 128 bytes) cores TS . e .
- Process RPC in-place on receiving core
— Avoid NUMA remote memory access < Numa node 0 Numa node 1

»

Metadata server




Performance/Design Decisions

1.Fast data path using one-sided RDMA Lock-free
. , datastructures #‘ . ?. .

- Metadata needs to include target address for read/write RPC

— Have the NIC DMA to/from actual application buffers processing

user-mapped

2.Scale metadata RPC using two-sided RDMA queues

CPU
- Keep RPC request/response messages small (< 128 bytes) cores
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- Process RPC in-place on receiving core

- Avoid NUMA remote memory access
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3.No threads, execute all I/O in the process context of the app
4.Avoid interrupts for small data transfers and RPCs

5.Per NUMA node pre-pinned buffer pool for application memory




6.Horizontal tiering

> Store data in Flash iff all DRAM in the cluster is exhausted

COEM|File

D HDD block
N Flash block

memory block

» Remote Flash = Local Flash




Example: Spark Shuffle using Cralil
@

sequential

.....
.......

-, read ‘@

How to avoid
large numbers
of small files?

1. Don't: Crall
performs well
for small files

2. Re-use per

compute
cluster <

core files
3. Interleaved
reading
\_Y_I ‘
_ reduce
Crail tasks

Directory
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Sorting 12TB on 128 Node Cluster

100
98.3s Fa Spark/Crail =—
Ll G R Spark/Vanilla s

Throughput (Gbit/s)

~ Elapsed time (seconds)

Size (TB) 12.8
Time (sec) 98 1406 134
Total cores 2560 6592 10240
Network HW (Gbit/s) 100 10 100
I Rate/core (GB/min)  3.13 0.66 4.4 I

www.sortingbenchmark.org




Pocket: Ephemeral Storage for
Serverless Analytics




* Serverless frameworks are increasingly being used for
interactive analytics

(spgg(’:r:r;) @databricks
serverless

gg: The Stanford Builder




* Serverless frameworks are increasingly being used for
interactive analytics

— Exploit massive parallelism with large number of serverless
tasks

User query
& =i === Result

input data




Serverless analytics involve multiple stages of execution

— Serverless tasks need an efficient way to communicate intermediate data between
different stages

Today: such data sharing is implemented using remote storage
— Enables fast and fine-grained scaling

Problem: existing storage platforms not suitable
- Slow (e.g., S3)
- No dynamic scaling (e.g. Redis)

- Designed for either small or large data sets

Can we use Crail?




capacity disaggregated

demand flash tier

local
flash tier

local
DRAM tier

) Metadata server
i Flash storage server
© ] DRAM storage server

compute/storage | storage flash storage _
co-located disaggregation disaggregation ) Application compute




capacity disaggregated

demand flash tier

local
flash tier

local
DRAM tier

™~

Not enough. We also

compute/storage | storage flash storage need elastic scaling.
co-located disaggregation disaggregation \

__




Pocket Overview

Brain of the
system, decides:

1. Type of storage
resources to use
for a job based
on job properties

2. When to scale
up/down
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app- I"J:ll"Eﬂ I"ESDI.I'.FCE _____________ - requestmuﬁng
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resources for job
Storage server Storage server Storage server Storage server
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Pocket: Resource Utilization

1.2 Em No Knowledge B Latency Sensitivity
e Num Lambdas ®mm Data Capacity + Peak Throughput J Provision based on per-}
A throughput limit
1.0 /"“k ghp
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g 0.6 Use Flash if app Es not
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0.4 /
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0.0 N

Sort Video Analytics A-cc

Pocket cost-effectively allocates resources based on user/framework hints




Pocket: Autoscaling
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crail.apache.org
github.com/apache/incubator-crail (Java)
github.com/patrickstuedi/crailnative (C++)

Pocket: Elastic ephemeral storage for serverless analytics,
OSDI'2019

github.com/stanford-mast/pocket

Wimpy nodes with 10 GbE: Leveraging One-sided RDMA operations
to boost Memcached, USENIX ATC’'12



http://crail.apache.org/
https://github.com/apache/incubator-crail
https://github.com/patrickstuedi/crailnative
https://anakli.inf.ethz.ch/papers/pocket.pdf
https://github.com/stanford-mast/pocket
https://www.usenix.org/system/files/conference/atc12/atc12-final36.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final36.pdf

Crail: Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
Bernard Metzler, Adrian Schuepbach, Ana Klimovic, Yuval
Degani

Pocket: Ana Klimovic, Yawen Wang, Patrick Stuedi,
Animesh Trivedi, Jonas Pfefferle, Christos Kozyrakis
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