Handling 100 Gb/s RDMA,
and NVMe in Apache Crail
and Pocket

Patrick Stuedi

'~ 2014: starting
~ Crail project |

2010 2015 2020

Storage 50 MB/s 500 MB/s 16 GB/s 10x

(HDD) (SSD) (NVMe)
Network 1 Gb/s 10 Gb/s 100 Gb/s 10x
CPU ~3 GHz ~3 GHz ~GHz

Reynold keynote, https://databricks.com/session_na20/wednesday-morning-keynotes

* Difficult to leverage modern networking and storage hardware

* Example (2016): sorting 12 TB on a 128 node cluster, all data
in DRAM, 100 Gb/s full bisection network

< 100 -
o) E]] E E
O 80 T D \ B
= 60 R EELLTRREES PR S Hardware limit-i - -........i...
R S E— —
2 20 f — I
c 0 | MMMA&MAMA&.
- 0 100 200 300 400 500

Elapsed time (seconds)

Software Overheads

1 Gbps HDD 100 Gbps | Flash
Bandwidth = 117 MB/s | 140 MB/s | 12.5GB/s | 3.1 GB/s
cycle/unit 38,400 10,957 360 495
Sorting Application [Soricr [
Data Processing Framework
filesystem RS Netty
TCP/IP block layer ~ IR
Ethernet ISCSI

NIC

SSD

software overhead
are spread

over the entire
stack

1 Gbps

10 Gbps

HotNets’16

40 Gbps

Reduce

| Misc.

M |terator
Ser

M Sorting
(@]

B JVM

M Linux

How do Supercomputers solve this?

Standard BG/Q Compute Fabri A i
ompu apric & Car []
e eBoe - 18P ([EEERENEEEN
%ﬁum Flash cards ﬂﬂﬂﬂHB}
o e N wy + L ; s
o2 00 e @
v/ B
‘ C/ BGAS Rack Targets IBM
o BlueGene
- - Active Store
Project
System Software Environment (2012)
= Linux OS enabling storage + embedded compute
| + OFED RDMA & TCP/IP over BG/Q Torus — failure resilient
= Standard middleware — GPFS, DB2, MapReduce, Streams

&

Active Storage Target Applications

;) B L : ... Scale it like Bﬁ:‘%
" FamielFisand Dojed Storge Systms Key architectural balance point: ,

All-to-all throughput roughly
equivalent to Flash throughput

= Graph, Join, Sort, order-by, group-by, MR, aggregation
= Application specific storage interface

RDMA on Azure

A Azure VM Types

Compute Memory Storage
Optimized Optimized Optimized

High
Performance
Compute

General Purpose

Av2, B, DCsv2, Dv2, M, Mv2, Dv2,]
- Dsv2, Dv3, Dsv3, Fsv2 DSv2, Ev3, Esv3, - NC,NCV2,NCV3,ND, oo -- Microsoft
ype Davé, Dasv4, Ddv4, Eavd, Easvd, Evd, NDv2, NV, NVv3, Nvvg 7 over it .. Azure
Ddsv4,Dv4, Dsv4 Esv4, Edv4, Edsv4 .
Linux RDMA
. . . . s R s High memory and
o Balanced CPU and High ratio of Highistioor Highdisk Spec'ahze.d juithisine e compute power —
Description memo compute to memo memory to throughput or multiple NVIDIA fastestand most
n7 P A7 compute and 10 GPUs
. . ' Batch processing,
Testing and Medium traffic web : : ’
Relational . Compute intengve, analytics, molecular
development, small- servers, network . Big Data, . . R
; - database services, graphics-intengive, modeling, fluid
medium databases, appliances, batch ; sSaL, NoSQL T .
low-medium traffic rocessing, a anshviics/larsch databases VR dynanteslon
P €, 3pp caches workloads latency RDMA
web servers servers -
networking

* User-level network architecture

* Kernel bypass

— NIC queues accessible from user-space

* Transport stack offloading
- Infiniband, RoCE, iWARP

* User-level network architecture

Low latency
 Kernel bypaSS no sycalls
Zero-copy
— NIC queues accessible from user-space directly DMA from/to
userspace buffers
* Transport stack offloading Low CPU usage

transport offloading
- Infiniband, RoCE, iWARP High bandwidth

* User-level network architecture

Low latency
 Kernel bypaSS no sycalls
Zero-copy
— NIC queues accessible from user-space directly DMA from/to
userspace buffers
* Transport stack offloading Low CPU usage
transport offlaading
- Infiniband, RoCE, iWARP —Higrbarawiath—

High bandwidth / core

RDMA Two-Sided Operations

Target Source
Application 1. post descriptor Application 1. post descriptor
to recv queue to send queue
2. wait for completion 2. wait for completion
Recv buffer descriptor to be Send buffer descriptor to be
enqueued in enqueued in
b completion queue ’ completion queue
“ (not shown) (not shown)
|
Recv queue . Send queue
(mapped) : . [:;Olllngi DMA (mapped)
Interrupts
——DMA 2 : _
Linux

Source does not need to know buffer address at target. Receiver is notified.

RDMA One-Sided Operations

Target

Application
Target Buffer

Source needs to know target address. 'Target IS not notified.

1. reqister buffer
with NIC
(causes memory

pinning)

RDMA
read

U R R]

Source

Application
Src Buffer

1. post read operation
descriptor
to send queue

2. wait for completion
descriptor to be
enqueued in
completion queue
(not shown)

* Host-controller interface for PCI
attached SSDs

* Enables user-level access for storage
— Map device queues into user-space
- SPDK, NVMe-over-Fabrics

Integrating User-level I/O with Data
Processing Systems

)
- 2 o 5
+— wn = = o
g-ccs &} = Q 5o 5@
o m n E'“E Oo

l»m»-»%»l

Can’t implement
every operation
for all the different
hardware,
framework and

Ilum_) deployment
EXPRESS options

13
3D XPoint

Integrating User-level I/O with Data
Processing Systems (2)

©
- L o 5
+— wn = = o
> ®© a o S o) e — @©
a 6 &8 £ O =@ =
£ m = n o Q= O
£t

o

ﬁ%’i

[Crail: (Distributed) Temporary Data Store

Implement hardware
support once and

u n support different
| % operations and
| EXPRESS.

frameworks

14
3D XPoint

Data Processing Framework

Crall

i L File read/write OEN|

KV put/get

Metadata

(1) Metadata Lookup

(2) Data
Read/Write

Server

\]
E....I.l..; é I;\
,:),\. oof|i(imm|||....
00| (mm
....... V'""":
Storage

class (e.g., DRAM, NVMe, HDD)

File, KV pair

Datacenter
Network

Storage
Server

- Data

striped
across
servers
and
possibly
storage
classes

Performance Challenges

1.Must handle millions of storage operations per second on a large
number files with a wide range of data sizes

» Example: the Spark shuffle engine built on top of Crail creates #partition files per core in the
cluster. With 128 machines each running 3 executors with 5 cores each that is 11M files (!)

> Files have a wide range of data sizes

100 T T T T T
90 - TPC-DS
80 [~ PR-Twitter

o ML-Cocoa == : : : : ‘ ‘ ‘ ‘
60 = R R A AR o

o A A A A A 555 R E A IR

CDF

o § [s S R
e S S (o B I
s e R s O, [R e e

0l P

0 |

data size

1.Must handle millions of storage operations per second on a large number
files with a wide range of data sizes

» Example: the Spark shuffle engine built on top of Crail creates #partition files per core in the cluster.
With 128 machines each running 3 executors with 5 cores each that is 11M files (!)

> Files have a wide range of data sizes

2.Should be able to read/write at line speed (e.g., 100 Gb/s) using a single
core (for a reasonable I/O size)

3.Must support reading/writing of tiny files in a few microseconds
4.Overall CPU consumption of the storage system should be kept low

5.Must be able to store data volumes > cluster DRAM

Performance/Design Decisions

Performance/Design Decisions

1.Fast data path using one-sided RDMA

- Metadata needs to include target address for read/write (not shown)

- Have the NIC DMA to/from actual application buffers

@ Future<int> ret = . Application
stream.Read(buf); DRAM server 1 Data Buffer
/7. .do work :
@ ret.get(); Storage blocks 1 @ @
BEl-N| | =
y ————————— ——
NVMf server - : =k
- =t _ i send § recv completion =
Staging buffers Linux o 1 Qg (QUGlcT g g
BB g1 e B8 B|:
hd -l-rsad | ;1-
+ s oy o
Jinux % " SLinux

nre adn

1 B

[BN BN BN BN BN BN .
Y

1
1

' 1

NVMF 1
1

1

1

1

Performance/Design Decisions

1.Fast data path using one-sided RDMA

- Metadata needs to include target address for read/write (not shown)

- Have the NIC DMA to/from actual application buffers

@ Future<int> ret =
stream.Read(buf);

DRAM server

£/, . do work
@ ret.get(); Storage blocks
NVMf server . . l’_
L w
- DA
Staging buffers Linux Ll

B85 -B
v ¥

.- OMA
s-inux

1 B

e T R e R R R

Application

Data Buffer

O
———— —

send § recv completion

queuey cqueue quiie

|
B

1
Ll !

I Y inux

I N ..
Y

W1 (e

Latency [us]

Bandwidth Gbps

80

60

40 -

20

Reading 256B

very close to
HW limits

DRAM e
Optane ===

"y

0 1 1
10000 100000 1x10°

1IAnc

Reading a 10GB File

1x107

Crail- DRAM ===~
Crail - NVMf =il

1 10 100
buffer size in KB

1000

Performance/Design Decisions

1.Fast data path using one-sided RDMA

- Metadata needs to include target address for read/write

Lock-free
datastructures #‘ .
RPC
— Have the NIC DMA to/from actual application buffers processing

user-mapped

2.Scale metadata RPC using two-sided RDMA queues

e B

209 P29
EEEREE
XXX

CPU
- Keep RPC request/response messages small (< 128 bytes) cores TS . e .
- Process RPC in-place on receiving core
— Avoid NUMA remote memory access < Numa node 0 Numa node 1

»

Metadata server

Performance/Design Decisions

1.Fast data path using one-sided RDMA Lock-free
. , datastructures #‘ . ?. .

- Metadata needs to include target address for read/write RPC

— Have the NIC DMA to/from actual application buffers processing

user-mapped

2.Scale metadata RPC using two-sided RDMA queues

CPU
- Keep RPC request/response messages small (< 128 bytes) cores

209 P29
EEEREE
XXX
NIC. NIC.

«— » «— >
Numa node 0 Numa node 1

- Process RPC in-place on receiving core

- Avoid NUMA remote memory access

»

Metadata server

T T T

T T T
3 | 1 metadata server ——
2 metadata servers ——
4 metadata servers

1 metadata server
can serve ~10 million
requests per second :

M ops/sec
5]

._.
=
T T T T

increasing load

3.No threads, execute all I/O in the process context of the app
4.Avoid interrupts for small data transfers and RPCs

5.Per NUMA node pre-pinned buffer pool for application memory

6.Horizontal tiering

> Store data in Flash iff all DRAM in the cluster is exhausted

COEM|File

D HDD block
N Flash block

memory block

» Remote Flash = Local Flash

Example: Spark Shuffle using Cralil
@

sequential

.....
.......

-, read ‘@

How to avoid
large numbers
of small files?

1. Don't: Crall
performs well
for small files

2. Re-use per

compute
cluster <

core files
3. Interleaved
reading
_Y_I ‘
_ reduce
Crail tasks

Directory

26

Sorting 12TB on 128 Node Cluster

100
98.3s Fa Spark/Crail =—
Ll G R Spark/Vanilla s

Throughput (Gbit/s)

~ Elapsed time (seconds)

Size (TB) 12.8
Time (sec) 98 1406 134
Total cores 2560 6592 10240
Network HW (Gbit/s) 100 10 100
I Rate/core (GB/min) 3.13 0.66 4.4 I

www.sortingbenchmark.org

Pocket: Ephemeral Storage for
Serverless Analytics

* Serverless frameworks are increasingly being used for
interactive analytics

(spgg(’:r:r;) @databricks
serverless

gg: The Stanford Builder

* Serverless frameworks are increasingly being used for
interactive analytics

— Exploit massive parallelism with large number of serverless
tasks

User query
& =i === Result

input data

Serverless analytics involve multiple stages of execution

— Serverless tasks need an efficient way to communicate intermediate data between
different stages

Today: such data sharing is implemented using remote storage
— Enables fast and fine-grained scaling

Problem: existing storage platforms not suitable
- Slow (e.g., S3)
- No dynamic scaling (e.g. Redis)

- Designed for either small or large data sets

Can we use Crail?

capacity disaggregated

demand flash tier

local
flash tier

local
DRAM tier

) Metadata server
i Flash storage server
©] DRAM storage server

compute/storage | storage flash storage _
co-located disaggregation disaggregation) Application compute

capacity disaggregated

demand flash tier

local
flash tier

local
DRAM tier

™~

Not enough. We also

compute/storage | storage flash storage need elastic scaling.
co-located disaggregation disaggregation \

__

Pocket Overview

Brain of the
system, decides:

1. Type of storage
resources to use
for a job based
on job properties

2. When to scale
up/down

Jlob A Job B Job C
AAAAAAA AAAAA
AAAAAAA AAAA
I RE‘QJ‘SIE‘_.I’-}E‘.I:EJ'
Lt ’)
ll;llt:l.nntr::tnllizr M jata f(s)
app- I"J:ll"Eﬂ I"ESDI.I'.FCE _____________ - requestmuﬁng
allocation & scaling ii. Allocate & assign
resources for job
Storage server Storage server Storage server Storage server
S e S = =
Met e Mer et
HDD Flash DRAM DRAM

Pocket: Resource Utilization

1.2 Em No Knowledge B Latency Sensitivity
e Num Lambdas ®mm Data Capacity + Peak Throughput J Provision based on per-}
A throughput limit
1.0 /"“k ghp
0.8

Normalized Resource Cost

s
g 0.6 Use Flash if app Es not
ul TR latency sensitive
0.4 /
0.2 J Provision only the GB]
and GB/s the app needs
0.0 N

Sort Video Analytics A-cc

Pocket cost-effectively allocates resources based on user/framework hints

Pocket: Autoscaling

s
6| ——. Total GB/s allocated - The controller elastically
—— Total GB/s used I scales resources to
i : meet the requirements
= : of multiple jobs
o -
4 1
=]
a3 - A p———
g N |
E = - Rl s
=
1
: L :

0 50 100 150 200 250 300 350
*l‘ 1 t ! Time (s)
Jabl lokl pobd J[E1LE Jl.";."3 j{i.:ll

crail.apache.org
github.com/apache/incubator-crail (Java)
github.com/patrickstuedi/crailnative (C++)

Pocket: Elastic ephemeral storage for serverless analytics,
OSDI'2019

github.com/stanford-mast/pocket

Wimpy nodes with 10 GbE: Leveraging One-sided RDMA operations
to boost Memcached, USENIX ATC’'12

http://crail.apache.org/
https://github.com/apache/incubator-crail
https://github.com/patrickstuedi/crailnative
https://anakli.inf.ethz.ch/papers/pocket.pdf
https://github.com/stanford-mast/pocket
https://www.usenix.org/system/files/conference/atc12/atc12-final36.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final36.pdf

Crail: Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
Bernard Metzler, Adrian Schuepbach, Ana Klimovic, Yuval
Degani

Pocket: Ana Klimovic, Yawen Wang, Patrick Stuedi,
Animesh Trivedi, Jonas Pfefferle, Christos Kozyrakis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

