
Patrick Stuedi

Handling 100 Gb/s RDMA,
and NVMe in Apache Crail
and Pocket

Hardware Changes since 2010

2010 2015 2020

Storage 50 MB/s
(HDD)

500 MB/s
(SSD)

16 GB/s
(NVMe)

10x

Network 1 Gb/s 10 Gb/s 100 Gb/s 10x

CPU ~3 GHz ~3 GHz ~GHz 😒

~ 2014: starting
Crail project

Reynold keynote, https://databricks.com/session_na20/wednesday-morning-keynotes

Challenges
put your #assignedhashtag here by setting the footer in view-header/footer● Difficult to leverage modern networking and storage hardware

● Example (2016): sorting 12 TB on a 128 node cluster, all data
in DRAM, 100 Gb/s full bisection network

Inflexible:
emporary data management hard-wired with data processing
framework

Difficult to change deployment (e.g., disaggregation, tiered
storage, etc.)

Software Overheads

Sorting Application

JVM

Netty

Serializer
sockets

Data Processing Framework

TCP/IP

Ethernet

NIC

filesystem

block layer

iSCSI

SSD

HotNets’16

software overhead
are spread
over the entire
stack

Sorter

How do Supercomputers solve this?

IBM
BlueGene

Active Store
Project
(2012)

RDMA on Azure

RDMA Networking

● User-level network architecture

● Kernel bypass
– NIC queues accessible from user-space

● Transport stack offloading
– Infiniband, RoCE, iWARP

RDMA Networking: Benefits

● User-level network architecture

● Kernel bypass
– NIC queues accessible from user-space

● Transport stack offloading
– Infiniband, RoCE, iWARP

Low latency
no sycalls

Zero-copy
directly DMA from/to
userspace buffers

Low CPU usage
transport offloading

High bandwidth
Good bandwith/core

RDMA Networking: Benefits

● User-level network architecture

● Kernel bypass
– NIC queues accessible from user-space

● Transport stack offloading
– Infiniband, RoCE, iWARP

Low latency
no sycalls

Zero-copy
directly DMA from/to
userspace buffers

Low CPU usage
transport offloading

High bandwidth
High bandwidth / core

RDMA Two-Sided Operations

Linux

Send queue
(mapped)

 Application

Send buffer

Linux

Recv queue
(mapped)

 Application

Recv buffer

DMA

DMA

1. post descriptor
 to recv queue
2. wait for completion
 descriptor to be
 enqueued in
 completion queue
 (not shown)

1. post descriptor
 to send queue
2. wait for completion
 descriptor to be
 enqueued in
 completion queue
 (not shown)

polling/
interrupts

Source does not need to know buffer address at target. Receiver is notified.

SourceTarget

Linux

Src Buffer

DMA

 Application

Linux

Target Buffer

DMA

 Application

RDMA
read

RDMA One-Sided Operations

DMA

send
queue

1. register buffer
 with NIC
 (causes memory
 pinning)

1. post read operation
 descriptor
 to send queue
2. wait for completion
 descriptor to be
 enqueued in
 completion queue
 (not shown)

Source needs to know target address. Target is not notified.

Target Source

NVM Express (NVMe)

● Host-controller interface for PCI
attached SSDs

● Enables user-level access for storage
– Map device queues into user-space

– SPDK, NVMe-over-Fabrics

13

B
ca

st

S
hu

ffl
e

M
a

p

R
ed

u
ce

In
p

ut

da
ta

In
te

rm

da
ta O
ut

pu
t

da
ta

Can’t implement
every operation
for all the different
hardware,
framework and
deployment
options

Integrating User-level I/O with Data
Processing Systems

14

Implement hardware
support once and
support different
operations and
frameworks

Integrating User-level I/O with Data
Processing Systems (2)

Crail:

B
ca

st

S
hu

ffl
e

M
a

p

R
ed

u
ce

In
p

ut

da
ta

In
te

rm

da
ta O
ut

pu
t

da
ta

Crail Architecture

Datacenter
Network

Metadata
Server

(2) Data
Read/Write

(1) Metadata Lookup

Storage
class (e.g., DRAM, NVMe, HDD)

Storage
Server

Data Processing Framework

File read/write
KV put/get

File, KV pair

Data
striped
across
servers
and
possibly
storage
classes

Crail

Performance Challenges

1.Must handle millions of storage operations per second on a large
number files with a wide range of data sizes
➢ Example: the Spark shuffle engine built on top of Crail creates #partition files per core in the

cluster. With 128 machines each running 3 executors with 5 cores each that is 11M files (!)

➢ Files have a wide range of data sizes

2.Tasks running on a single core should be able to read/write at line speed
(e.g., 100 Gb/s)

3.Must support reading/writing of tiny files in a microseconds

4.Overall CPU consumption of the storage system should be kept low

5.Must be able to store data volumes > cluster DRAM0

10

20

30

40

50

60

70

80

90

100

1 1kB 1MB 1GB

C
D

F

data size

TPC-DS

PR-Twitter

ML-Cocoa

Performance Challenges

1.Must handle millions of storage operations per second on a large
number files with a wide range of data sizes
➢ Example: the Spark shuffle engine built on top of Crail creates #partition files per core in the

cluster. With 128 machines each running 3 executors with 5 cores each that is 11M files (!)

➢ Files have a wide range of data sizes

2.Tasks running on a single core should be able to read/write at line speed
(e.g., 100 Gb/s)

3.Must support reading/writing of tiny files in a microseconds

4.Overall CPU consumption of the storage system should be kept low

5.Must be able to store data volumes > cluster DRAM0

10

20

30

40

50

60

70

80

90

100

1 1kB 1MB 1GB

C
D

F

data size

TPC-DS

PR-Twitter

ML-Cocoa

Performance Challenges

1.Must handle millions of storage operations per second on a large number
files with a wide range of data sizes
➢ Example: the Spark shuffle engine built on top of Crail creates #partition files per core in the cluster.

With 128 machines each running 3 executors with 5 cores each that is 11M files (!)

➢ Files have a wide range of data sizes

2.Should be able to read/write at line speed (e.g., 100 Gb/s) using a single
core (for a reasonable I/O size)

3.Must support reading/writing of tiny files in a few microseconds

4.Overall CPU consumption of the storage system should be kept low

5.Must be able to store data volumes > cluster DRAM

Performance/Design Decisions
1.Fast data path using one-sided RDMA

– Metadata needs to include target address to read/write

– Have the NIC DMA to/from actual application buffers

2.Scale metadata RPC using two-sided RDMA
– Keep RPC request/response messages small (< 128 bytes)

– Process RPC in-place on receiving core

– Avoid NUMA remote memory access

3.No threads, execute all I/O in the process context of the app

4.Avoid interrupts for small data transfers and RPCs

5.Keep per NUMA pre-pinned buffer pool for application memory

1 22

1

Performance/Design Decisions
1.Fast data path using one-sided RDMA

– Metadata needs to include target address for read/write (not shown)

– Have the NIC DMA to/from actual application buffers

2.Scale metadata RPC using two-sided RDMA
– Keep RPC request/response messages small (< 128 bytes)

– Process RPC in-place on receiving core

– Avoid NUMA remote memory access

3.No threads, execute all I/O in the process context of the app

4.Avoid interrupts for small data transfers and RPCs

5.Keep per NUMA pre-pinned buffer pool for application memory

1 22

1

Performance/Design Decisions
1.Fast data path using one-sided RDMA

– Metadata needs to include target address for read/write (not shown)

– Have the NIC DMA to/from actual application buffers

2.Scale metadata RPC using two-sided RDMA
– Keep RPC request/response messages small (< 128 bytes)

– Process RPC in-place on receiving core

– Avoid NUMA remote memory access

3.No threads, execute all I/O in the process context of the app

4.Avoid interrupts for small data transfers and RPCs

5.Keep per NUMA pre-pinned buffer pool for application memory

1 22

1

very close to
HW limits

Performance/Design Decisions
1.Fast data path using one-sided RDMA

– Metadata needs to include target address for read/write

– Have the NIC DMA to/from actual application buffers

2.Scale metadata RPC using two-sided RDMA
– Keep RPC request/response messages small (< 128 bytes)

– Process RPC in-place on receiving core

– Avoid NUMA remote memory access

3.No threads, execute all I/O in the process context of the app

4.Avoid interrupts for small data transfers and RPCs

5.Per NUMA node pre-pinned buffer pool for application memory

CPU
cores

user-mapped
queues

RPC
processing

Lock-free
datastructures

 NIC NIC

 Numa node 1 Numa node 0

Metadata server

Performance/Design Decisions
1.Fast data path using one-sided RDMA

– Metadata needs to include target address for read/write

– Have the NIC DMA to/from actual application buffers

2.Scale metadata RPC using two-sided RDMA
– Keep RPC request/response messages small (< 128 bytes)

– Process RPC in-place on receiving core

– Avoid NUMA remote memory access

3.No threads, execute all I/O in the process context of the app

4.Avoid interrupts for small data transfers and RPCs

5.Per NUMA node pre-pinned buffer pool for application memory

CPU
cores

user-mapped
queues

RPC
processing

Lock-free
datastructures

 NIC NIC

 Numa node 1 Numa node 0

Metadata server

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

IO
P

S
 [

m
ill

io
ns

]

Number of clients

Namenode IOPS

2 Namenodes IOPS

4 Namenodes IOPS

increasing load

1 metadata server
2 metadata servers
4 metadata servers

M
 o

ps
/s

e
c 1 metadata server

can serve ~10 million
requests per second

Performance/Design Decisions
1.Make data path fast using one-sided RDMA

– Metadata needs to include target address for read/write

– Have the NIC DMA to/from actual application buffers

2.Scale metadata RPC using two-sided RDMA
– Keep RPC request/response messages small (< 128 bytes)

– Process RPC in-place on receiving core

– Avoid NUMA remote memory access

3.No threads, execute all I/O in the process context of the app

4.Avoid interrupts for small data transfers and RPCs

5.Per NUMA node pre-pinned buffer pool for application memory

Performance/Design Decisions

6.Horizontal tiering
➢ Store data in Flash iff all DRAM in the cluster is exhausted

➢ Remote Flash ≈ Local Flash

 File
 HDD block

 Flash block
 memory block

26

Example: Spark Shuffle using Crail

Crail
File Crail

Directory

append 2
sequential

read

1

reduce
tasks

map
tasks

compute
cluster

How to avoid
large numbers
of small files?

1. Don’t: Crail
performs well
for small files

2. Re-use per
core files

3. Interleaved
reading

Sorting 12TB on 128 Node Cluster

98.3s

527.6s

hardware
limit

www.sortingbenchmark.org

Pocket: Ephemeral Storage for
Serverless Analytics

● Serverless frameworks are increasingly being used for
interactive analytics

Exploit massive parallelism with large number of serverless
tasks

Serverless Analytics

● Serverless frameworks are increasingly being used for
interactive analytics
– Exploit massive parallelism with large number of serverless

tasks

Serverless Analytics

● Serverless analytics involve multiple stages of execution
– Serverless tasks need an efficient way to communicate intermediate data between

different stages

● Today: such data sharing is implemented using remote storage
– Enables fast and fine-grained scaling

● Problem: existing storage platforms not suitable
– Slow (e.g., S3)

– No dynamic scaling (e.g. Redis)

– Designed for either small or large data sets

● Can we use Crail?

Challenge: Data Sharing

Crail Deployment Modes

compute/storage
co-located

storage
disaggregation

flash storage
disaggregation

Crail Deployment Modes

compute/storage
co-located

storage
disaggregation

flash storage
disaggregation

Not enough. We also
need elastic scaling.

Pocket Overview
Brain of the
system, decides:

1. Type of storage
resources to use
for a job based
on job properties

2. When to scale
up/down

Pocket: Resource Utilization

Pocket cost-effectively allocates resources based on user/framework hints

Pocket: Autoscaling

put your #assignedhashtag here by setting the footer in view-header/footer● crail.apache.org

● github.com/apache/incubator-crail (Java)

● github.com/patrickstuedi/crailnative (C++)

● Pocket: Elastic ephemeral storage for serverless analytics,
OSDI’2019

● github.com/stanford-mast/pocket

● Wimpy nodes with 10 GbE: Leveraging One-sided RDMA operations
to boost Memcached, USENIX ATC’12

References

http://crail.apache.org/
https://github.com/apache/incubator-crail
https://github.com/patrickstuedi/crailnative
https://anakli.inf.ethz.ch/papers/pocket.pdf
https://github.com/stanford-mast/pocket
https://www.usenix.org/system/files/conference/atc12/atc12-final36.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final36.pdf

Contributers

Crail: Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
Bernard Metzler, Adrian Schuepbach, Ana Klimovic, Yuval
Degani

Pocket: Ana Klimovic, Yawen Wang, Patrick Stuedi,
Animesh Trivedi, Jonas Pfefferle, Christos Kozyrakis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

